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Abstract

Despite great medical advances, oncological research is still looking for novel
therapeutic approaches due to the limitation of conventional therapeutic agents.
Virotherapy is one of these new emerging therapeutic approaches that attract at-
tention with their widespread applications. Virotherapy use lives oncolytic viruses
or genetically engineered viruses that selectively infect the tumor cells, replicate,
and disrupt the cancerous cells that also induce their anticancer activity by stimu-
lating the host antitumor immune response. Moreover, viruses are widely used
as target delivery vectors for specifically delivering different genes, therapeutic
agents, and immune-stimulating agents. In addition to having antitumor activity
by themselves in combination with conventional therapeutic agents like immune
therapy and chemotherapy, Virotherapy agents also elicit promising outcomes.
Therefore, in addition to their promising result in monotherapy use, virotherapy
agents can also be used in combination with conventional cancer therapy, epi-
genetic modulators, and even microRNAs without any cross-resistance, which
allows the patient not to be deprived of her routine medicine. Still, this combina-
tion therapy reduces the adverse effect of the conventional therapies. All together
suggest that virotherapy agents as novel potential agents in the field of cancer
therapy.
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1 | INTRODUCTION

Cancer is well known as a major global health concern.'?
The most conventional therapies that are already used for
cancer and can extend the survival time of patients with
cancer include surgery, radiotherapy, chemotherapy, and
immunotherapy.3_5 However, all these conventional ther-
apies have some limitations that have led to their failure
in cancer treatment.

Surgery is most commonly used to remove the tumor
in the early stages, but it cannot be an effective and suf-
ficient treatment alone; hence, it is often combined with
other cancer treatments, including chemotherapy and
radiation.® Furthermore, surgery and radiotherapy are in-
effective in disseminated cancers and are more efficient
against localized cancers; therefore, it seems that chemo-
therapy is the only choice.” In addition, chemotherapy
cannot be considered a sufficient therapeutic approach
on its own due to the lack of specific toxicity for tumor
cells. Moreover, in some cases, chemotherapeutic agents
could lead to the development of multi-drug resistant
(MDR) cells.® Another conventional cancer therapy is im-
munotherapy, which has only 10%-30% effectiveness.”™
Therefore, there is an urgent need for new treatment strat-
egies with potent tumor-killing properties and fewer di-
verse effects.

Many viruses are effective in cancer treatment.
Recently, virotherapy has attracted more attention as an
effective agent in cancer treatment. Human intestinal cy-
topathic orphan viruses, adenoviruses, and herpes sim-
plex viruses can replicate in tumor cells, causing cancer
cells to die.'* '3 Besides, some virus species have antican-
cer effects by enhancing the host immune system.'* This
study aimed to comprehensively review the role of viruses
in the development of cancer as well as the latest advances
in the anticancer applications of viruses.

2 | VIRUSES IN CANCER
DEVELOPMENT

Some studies suggest that viruses are the leading causes
of nearly 10%-15% of all cancers worldwide. At the same
time, other pieces of evidence claim that cancer devel-
opment as a result of viral infections is usually a rare
event.”> Although some viral infections can increase the
risk of cancer, they do not necessarily cause the progres-
sion of cancer. According to epidemiological reports, the
carcinogenesis of viruses depends on the virus load, the
persistence of infection, and the duration of infection.'®!”
Some common viral carcinogenic features of cancer de-
velopment include (i) direct transformation through the
expression of viral genes, (ii) encoding oncoproteins, (iii)

inactivating regulators of genome stability, (iv) interfer-
ence in cell viability and cell cycle, (v) inactivating p53
and retinoblastoma proteins (pRB), (vi) activation of the
DNA damage response, and (vii) changes to cellular levels
of reactive oxygen species (ROS) and induction of oxida-
tive stress (OS) (Table 1) (Figure 1).

2.1 | DNA oncoviruses

2.1.1 | Hepatitis B virus

Hepatitis B Virus (HBV) is well known as a hepadnavirus
with double-stranded DNA, which increases the risk of
hepatocellular carcinoma (HCC)."® According to the re-
ports, the HBV genome is observed in over 80% of HCCs,
and there is a 5-15-fold increase in the incidence risk of
HCC in people who are with chronic HBV carriers."
Nevertheless, it is not always the case, as the integrated
form of HBV is also detected in the non-tumor tissues of
people with chronic HBV infection.?>*! However, genome
integration of HBV into hepatocytes increases the risk of
HCC development, which occurs during chronic infection
of HBV and leads to an increase in the expression level
of cancerous genes, including telomerase reverse tran-
scriptase (TERT), mixed-lineage leukemia 4, and encod-
ing cyclin E1 (CCNE1) (encoding cyclin E1).***

Overall, integrating the HBV genome raises cancer
risk by causing additional genetic changes and interfer-
ence with crucial cell processes. These processes include
chromosomal deletions, translocations, the fusion of tran-
scripts, DNA replication, and instability of the genome,
which result in overexpression of oncogenes, repression
of p53, inactivation of apoptosis mediated by p53, inac-
tive cell cycle regulation, transactivation protein kinase C,
JAK/STAT, and PI3K pathways, and upregulates the ex-
pression of TGF-p.2*%®

2.1.2 | Human papillomaviruses

Human papillomaviruses (HPVs) are double-stranded
DNA viruses that can infect epithelial cells.”? HPVs are
well known as causative agents of the second most com-
mon cancer in women worldwide, called cervical can-
cer.’>?! According to the reports, the DNA of HPV is
observed in more than 90% of malignant squamous le-
sions of the uterine cervix. The HPV16, HPV18, HPV3l1,
and HPV33 are the most common members of this family
that are involved in more than 90% of all cervical cancer
cases.”> However, HPV type 16 is considered the most di-
agnostic type, having been observed in more than 50% of
all cervical cancer cases.*
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FIGURE 1 Oncogenesis mechanisms of viruses in cancer development. Viruses induce their carcinogen activity via insertion near the
cancer genes such as telomerase reverse transcriptase (TERT), cyclin A2 (CCNA2), and cyclin E1 (CCNEL1), and increase their expression,
which results in inactivating the p53 and apoptosis mediated by that. Moreover, viruses, by increasing the expression of some factors like

TGF-f, can the tumor development due to the inducing and sustaining tumor angiogenesis. In addition, these viruses change and increase

ROS production and induce oxidative stress (OS), resulting in DNA damage and then increasing the risk of tumor development.

In addition to cervical cancer, a high-risk HPV infec-
tion can mediate other malignancies that account for
more than 90% of anal cancers, 70% of vaginal and vulvar
cancers, 60% of penile cancers, and 63% of oropharyngeal
cancers.” The E6 and E7 are the oncogenes encoded by
HPYV, which have a critical role in the cancer development
process.”*?* The integration of HPV-16 into the host ge-
nome disrupts the E2 gene, which is a negative regulator
for the expression of E6 and E7; hence, it leads to the high
expression of these two oncoproteins and then cancer
development.*®*’

The E6 oncogenes increase the risk of cancer by caus-
ing rapid degradation of p53, which is an important
tumor-suppressor protein that also activates human TERT
(hTERT). Moreover, E7 also plays a role in cancer devel-
opment via inactivating pRB, a tumor suppressor protein
that prevents excessive cell growth.*® High generation of
ROS and repetitive nerve stimulation (RNS) are the other
factors that increase the integration risk of HPV through
the further breaking of the DNA strand, which increases
the integration of HPV-DNA into cellular chromatin.***
Furthermore, nitrative and oxidative DNA damage is
also observed in the case of high-risk HPV infections
that play a role in cervical carcinogenesis mediated by
inflammation.*!

2.1.3 | Merkel cell polyomavirus

Merkel cell polyomavirus (MCV) belongs to the double-
stranded DNA polyomaviruses, which are well known
as causative agents of Merkel cell carcinoma (MCC).*
The MCYV induces its anticancer activity by encoding the
tumor-associated antigens and protein complexes that can
target multiple tumor suppressor proteins, like pRB and
p53.” Recent findings have suggested that the association
between MCV and MCC is very similar to cervical cancer
induced by HPV due to the recurrent pattern of conserved
viral DNA sequences, integration of MCV into the host
genome, and expression of viral oncoproteins.* However,
more research is required to define the function of inte-
gration in MCC carcinogenesis.

2.1.4 | Epstein-Barr virus

Evidence suggests that Epstein-Barr virus (EBV), a mem-
ber of double-stranded DNA herpesviruses, is associated
with several malignancies, such as Burkitt's lymphoma,
nasopharyngeal carcinoma, and several lymphoprolifera-
tive disorders.* In the case of Burkitt's lymphoma, there
are three different clinical variants, including endemic,
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sporadic, and immunodeficiency, while EBV is observed
in more than 96% of endemic variant Burkitt's ymphoma
cases. In vitro studies have shown that EBV has trans-
formative abilities through changing cellular gene tran-
scription and activating cell signaling pathways, resulting
in EBV-encoded latent genes inducing B-cell transforma-
tion into permanently latently infected lymphoblastic
cell lines (LCLs).*® Unlike the others described above,
the integration of the EBV genome with the host is rare.
However, the integration of EBV into the fragile sites of
the host genome causes partial deletion in the viral ge-
nome. Also, it generates a region that leads to instability in
the host genome. This instability in the host genome leads
to the loss of some host genes, like the BTB domain and
CNC homolog 2 (BACH2), that are associated with tumor
suppressor genes and are probably involved in lymphom-
agenesis.”’ The available evidence suggests that EBV may
play a role in nasopharyngeal carcinoma (NPC). These re-
ports have investigated the integrated EBV in NPC biopsy
samples and revealed the integrated EBV in some NPC
cell lines that are EBV-positive, HSB4, and H2B17-7.*
However, the role of EBV-DNA integration and the risk of
NPC is still unknown.

2.1.5 | Kaposi's sarcoma-associated
herpesvirus

Kaposi's sarcoma-associated herpesvirus (KSHV) is a
human gamma herpesvirus with a double-stranded DNA
herpesvirus. The KSHV is well known as the causative
agent of primary effusion lymphoma and is common in
AIDS patients.* Moreover, this virus is associated with
multicentric Castleman disease (MCD) and inflamma-
tory cytokine syndrome. The anticancer activity of the
KSHYV is induced by encoded oncoproteins known as
latency-associated nuclear antigen 1, which inhibits the
tumor-suppressive activity of p53 and represses its tran-
scription.so Moreover, this oncovirus has anticancer ac-
tivity via encoding the interferon regulatory factor-like
signal-transduction protein, ORF K9, that blocks the
signaling pathways induced by interferon. This inhibition
protects oncoviruses from interferon-associated antiviral
function.”

2.1.6 | Simian virus 40

Simian virus 40 (SV40) is another oncogenic DNA virus
associated with brain tumors, osteosarcomas, malignant
mesothelioma, and lymphomas.>® This oncovirus has anti-
tumor activity by encoding the large T antigen (LT), which
can bind to the p53 gene, inactivate it, and inhibit the

o e 11131
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p53-mediated cell death.>® Moreover, the LXCXE motif of
this oncoprotein can bind to pRb, which results in the inac-
tivation of the function of this tumor suppressor protein.>*
In addition, LT is also able to inactivate the RASSF1A gene,
which is a tumor suppressor gene.>*® Furthermore, LT
of SV40 contributes to tumor development by activating
the growth factor receptors, including Met, Notch-1, and
IGF-1R, which enhance cell division and the carcinogen-
esis process by activating the extracellular-signal-regulated
kinase and AP-1 pathways.”’ Moreover, this oncoprotein
can induce the DNA damage response by binding to the
mitotic spindle checkpoint kinase BUB-1, which is in the
best interest of the oncovirus.®*®!

2.2 | RNA oncoviruses

2.2.1 | Human T-cell leukemia virus-1

Human T-cell leukemia virus-1 (HTLV-1), well known as
RNA oncovirus, belongs to the family Retroviridae and
the genus Delta retrovirus and is associated with fatal T-
cell leukemia (adult T-cell leukemia) and progressive my-
elopathy (HTLV-1-associated myelopathy/tropical spastic
paraparesis HAM/TSP).*> HTLV-1 promotes the prolifera-
tion of infected T cells by expressing Tax and HBZ, both
of which have been linked to oncogenesis. The prolifer-
ation of infected T cells causes many infected T cells to
have unique sites for integrating HTLV-1 with the host
genome. According to the reports, Tax has a role in tumor
initiation, while HBZ is responsible for its maintenance.®
Tax is a 40-kDa trans-regulatory protein crucial in trans-
forming infected cells into adult T-cell leukemia. This
oncoprotein can bind to the hTERT via occupied c-Myc
binding sites, resulting in unexpected hTERT expression.
Tax is also capable of targeting the nuclear factor-B (NF-
B) pathway, which is important in regulating antitumor
immune responses. This oncoprotein also has antican-
cer activities by affecting proteins, such as p16, p15, and
Rb, that are cell cycle inhibitors, and thereby leading to
cyclins and cyclin-dependent kinase activation. The tax
also mediates the generation of ROS by affecting different
pathways that result in DNA damage.®* Tax also has anti-
cancer activity via inactivating the tumor suppressor pro-
tein p53. However, evidence suggests that tax is repressed
after cancer development.

In contrast, HBZ is encoded in all adult T-cell leukemia/
lymphoma (ATLL) cells and HTLV-1 infected cells, which
are called ubiquitously expressed proteins.®> The HBZ is
able to increase the CD4 + Foxp3 + Treg cells, which result
in inflammatory disorders in several sites, such as the in-
testines, skin, and lungs.®® This protein also promotes the
generation of infected cells by HTLV-1.°"%8
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Reoviridae
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111

head and neck, Ovarian cancer,

Lung cancer

cells and chemokines/cytokines responses; Induce T-cells responses
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Glioblastoma, Pancreatic ductal

A replication selective in tumor cells; Cell cycle arrest at G2; Induce

ParvOryx (H-1PV)

Parvoviridae

carcinoma NCT02653313

apoptosis; Dysregulation of cell transcription; Activation of cellular stress

response; Induce cell death.

NCT02192775

Phase I/II

Myeloma, Ovarian

A replication selective in tumor cells; Tumor cell lysis; Induce tumor cell

MV-NIS

Paramyxoviridae

NCT02068794

carcinoma, Peritoneal

syncytia; Tumor-specific killing.

NCT00450814

Carcinoma, Fallopian tube

transitional cell

carcinoma

NCT00554372

Phase IT /

Hepatocellular carcinoma,

Lysis of tumor cells; Expresses GM-CSF; Elicit the antitumor immune

JX-594

Poxviridae

NCT01636284

111

Melanoma

response.

(Pexa-Vec)

NCT00429312
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2.2.2 | Hepatitis C virus

Hepatitis C virus (HCV) is a positive-sense single-stranded
RNA virus and belongs to the family of Flaviviridae,
which is also well known as the causative agent of HCC
and human lymphomas. According to the reports, about
2%-3% (130-170 million) of people worldwide have been
infected with HCV. There is an 11.5-17-fold increase in
the risk of HCC development in people with HCV in-
fection.®”’® In other words, the incidence risk of HCC
is about 15-30% within 20years.”"’*> The HCV induces
its oncolytic activity by encoding the oncoprotein called
NS5A, which is able to bind to the p53 and suppress the
transcription of p21WAF1.**”® Furthermore, NS5A can
affect Bax and prevent apoptosis by binding to the p53.”
Moreover, this oncoprotein affects signal transduction,
transcription, transformation, and ROS generation, re-
sulting in the upregulation of Bcl-XL and Cyclin-D. All
these allow HCV to induce chronic liver inflammation by
changing the cytokine profile and disrupting the balance
between apoptosis and proliferation which results in can-
cer development.”’®

3 | VIRUSES IN CANCER
THERAPY

Virotherapy refers to using viruses to treat cancer that
can find and destroy tumor cells specifically through dif-
ferent mechanisms without affecting normal cells. This
method converts viruses into therapeutic agents by using
biotechnology and reprogramming them to treat can-
cer. Virotherapy can be divided into three main groups,
namely: (i) anticancer oncolytic viruses, (ii) viral vec-
tors for gene therapy, and (iii) viral immunotherapy.
All these approaches are based on therapeutic methods,
including overexpression of the specific genes, usage of
RNA methods to silence or decrease the expression of
cancerous genes called gene knockout, and usage of the
virus as a vector to deliver the gene that induces apopto-
sis and death in tumor cells, also known as “suicide gene
delivery.”

3.1 | Oncolytic virotherapy

These viruses induce their anticancer activity through
rapid reproduction within the cancerous cells that leads
to membrane ruptures and destruction, then the release
of antigens that result in easy recognition and stimula-
tion of the immune system to destroy the tumor cells.”””®
Currently, oncolytic viruses attract more attention as ther-
apeutic agents in the treatment of cancer (Table 2).
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FIGURE 2 Anticancer mechanism of viruses. Oncolytic viruses (OV) induce their anticancer activity through different mechanisms

like direct infection and killing the tumor cell or indirectly via stimulating and recruitment of the host immune system. Moreover, oncolytic
viruses combine with other anticancer strategies such as chemotherapy and HDACI that enhance the anticancer activity by stimulating the
T-cell responses, inducing the apoptotic-related genes (Bax, Bak, and Bim), arresting the tumor cell cycle, and inhibiting the angiogenesis. In
addition, they are widely used as a delivery vector for gene therapy and immunotherapy agents that result in eliciting the antitumor immune

responses.

One of the most significant challenges in conventional
cancer therapy is the lack of selective toxicity toward
tumor cells with no side effects on normal cells. Viruses
have been chosen as a new therapeutic approach to over-
come this challenge due to their ability to target specific
receptors that have overexpression on tumor cells that
allow the selective entry of the virus. As an example, the
measles virus can target the CD46 that has overexpres-
sion on multiple myeloma cells.”” Unbridled metabolism,
as well as the rapid growth and division of tumor cells,
make them a selective niche for many viruses, which is
also advantageous for their replication, compared to non-
tumorous cells.”””® Furthermore, cancer cells mostly have
alterations during the transformation process, such as
losing the innate antiviral response pathways that make
them susceptible to many more viruses compared to their
non-transformed cellular counterparts.

Furthermore, cancer cells often are not able to in-
duce antiviral responses, such as type I and II interfer-
ons (IFNs) or tumor necrosis factor (TNF).%* Newcastle
disease virus (NDV) is well known as an RNA oncolytic
virus that despite its cancerous nature exhibit anticancer

activity and is able to selectively infects tumor cells.®*?

Hepatitis B Virus (HBV) is another oncovirus that also
exhibits anticancer activity by raising the expression of
TERT, MLL4, and CCNE1, downregulating the intracellu-
lar level of tumor suppressor protein p53 and upregulating
TGF-p.**2% Oncolytic adenovirus is another example
that probably induces cancer by hijacking the cell's cru-
cial prosses and inserting its own nucleic acid into the
host cells. However, this virus is also the same as the NDV
despite its nature, widely used in cancer therapy, and
mostly needs to be engineered and modified*®® (more
information about them is explained in title 3.2.). Some
of them are engineered for targeting the specific receptors
of tumor cells. Newcastle disease virus, autonomous par-
vovirus, and reovirus are non-engineered viruses, while
the adenovirus, herpes simplex, and vaccinia are some
examples of the engineered viruses which have different
abilities to lyse cells, activate the immune system, and
transfer genes®”*° (Figure 2). The first oncolytic viral to
be authorized by regulatory authorities for the therapy
of cancer was RIGVIR, a non-pathogenic intestinal cyto-
pathic human orphan virus, which was approved in Latvia
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in 2004 for the treatment of melanoma. The modified ade-
novirus H101 (Oncorine, recombinant human adenovirus
type 5 injection, ankeri), which was authorized in China
in 2005, has not yet gained international recognition for
its therapeutic efficacy.”® After that in 2015, T-VEC for
melanoma was the first oncolytic viral immunotherapy li-
censed by the US Food and Drug Administration (FDA) in
2015. T-VEC (Imlygic®) is a modified herpes simplex virus
(HSV) to produce the immune-stimulating GM-CSF pro-
tein in cancer cells and is less likely to infect healthy cells
approved for certain subgroups of melanoma patients. It
infects tumor cells and encourages their death. It is per-
mitted for specific melanoma patients.”* The approval of
T-VEC for sale in Europe and Canada in 2016 signaled the
development of oncolytic virus technology for the treat-
ment of cancer. Other oncolytic virus products are under-
going phase ITI/II clinical studies®® (Table 2).

3.2 | Viral vector in cancer therapy

As viruses have an immunogenic nature, researchers can
engineer their genetic materials to change them into non-
infectious strains, and then use these recombinant viruses
to carry any transgenes for their expression in tumor cells.
Different recombinant viruses can deliver and express the
transgene in immune cells, such as antigen-presenting
cells, most specifically dendritic cells, that stimulate the
immune response toward tumor cells.”*** This manner is
considered a type of gene therapy because recombinant
viruses can alter genes in targeted cells. In addition to the
cancer cells, these recombinant viruses can also target
the malfunctioning cells which are involved in genetic
diseases.””® These recombinant viruses, which are also
called viral vectors, can destroy the tumor cells directly
or be used to stimulate tumor immune responses via the
expression of tumor-specific antigens’® (Figure 2).

3.2.1 | Viral gene therapy

Viral gene therapy is a radically new treatment that uses
engineered viral vectors to deliver or introduce a foreign
gene into the cancer cell. These modified viruses are used
as delivery vehicles to introduce specific DNA sequences
that encode genes and regulate RNAs (siRNAs), enzymes,
antibodies, or other therapeutic substrates in the cancer-
ous cells.”” Viral vectors are widely used as delivery vehi-
cles of therapeutic agents due to their enhanced ability to
permeate cells that are hard to access. All these features
indicate that viral-vector gene therapies can be considered
a method for treating a wide spectrum of immunogenic
diseases and cancer by controlling and programming
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Cancer Medicine _ “WI LEYJ—

specific gene expression.” In addition to controlling the
expression of specific genes, virally engineered vectors are
also used to turn off the gene in diseases caused by over-
expression. The three most common viruses are used as
delivery vectors, including adeno-associated virus vectors
(AAV), adenovirus vectors, and lentivirus vectors.” The
AAV vectors, as well as adenovirus vectors, are mostly
used as delivery vectors for gene therapy through direct
administration to the host. However, lentivirus vectors
are used for ex vivo therapies which means that the har-
vested host cells are modified in the laboratory before
transplantation.”

3.2.2 | Viral immunotherapy

Viral immunotherapy is based on using viruses as de-
livery vehicles for immune-stimulating substances, like
tumor-specific antigens, which help the host immune
system recognize and fight tumor cells.”® Oncolytic ad-
enoviruses are among the most prevalent viruses used
as a vehicle for cancer immunotherapy. A cytokine
transgene, granulocyte-macrophage colony-stimulating
factor (GMCSF), was recently added to the genome of an
adenovirus, causing GMCSF production alongside virus
replication. The production of GMCSF leads to the re-
cruitment and maturation of dendritic cells that cause
oncolysis and the induction of T-cell responses by releas-
ing the tumor-specific antigens.'**'°! In addition to the
genetically engineered viruses, the attenuated or killed
virus is also used to generate an immune response in the
host cells, which is well known as the vaccine.'’> These
vaccines are another branch of viral immunotherapy
and are different from the vaccines that work against
viruses. These vaccines do not prevent the disease but
instead, affect the development of immunity. Vaccines
that are used in cancer therapy are made of parts of cells
or pure antigens which are tumor-specific. Cancer vac-
cines are mostly used along with adjuvants which are
well known as substances or cells that can help boost
further immune response.'® Sipuleucel-T (Provenge) is
an example of a cancer vaccine used to treat advanced
prostate cancer. Talimogene laherparepvec is another
vaccine that has been approved to treat advanced mela-
noma skin cancer.'” Chimeric antigen receptor T cells
are also considered as another form of viral immuno-
therapy.'® This strategy is based on using genetically
engineered T cells that can produce an artificial T-cell
receptor that results in tumor cell killing. For this pur-
pose, T cells will be transduced to the viral vector with
a gene encoding the engineered chimeric antigen recep-
tor after purification. To be safe, the most common viral
vector used for this purpose is one created by integrating
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Gammaretrovirus into Lentiviral and having a partial
deletion on their U3 region.'®®

4 | VIRUSES IN CANCER
DIAGNOSIS

Imaging technologies, like CT and MRI, play an irre-
placeable role in cancer diagnosis; however, they are
not effective in the primary identification of early stages
of tumors and metastases. Currently, to overcome this
challenge, oncolytic viruses are widely used to improve
the efficacy of tumor imaging. The oncolytic viruses
can selectively enter and replicate in tumor cells, carry
specific genes, and express them into the tumor cells.
Therefore, with the addition of genes, such as the lu-
ciferase reporter gene and human sodium iodine sym-
porter gene, they can be detectable via gene expression
products, such as fluorescence.'®® Fluorescence imag-
ing is one of the applications of oncolytic viruses in the
field of the cancer diagnosis, which has higher accuracy
and agility compared with the conventional diagnostic
methods.'%

Furthermore, the oncolytic viruses in the field of
nuclear medical imaging have also attracted attention
due to the reporter genes expressed in the tumor cells
via these viruses that can acquire the exact location of
tumor sites.'”” The most common reporter genes are the
human sodium iodine symporter gene, the thymidine
kinase gene, and human type 2 somatostatin receptor
gene. These viruses are detectable by different tech-
niques, such as optical molecular imaging, biolumines-
cence imaging, and fluorescence imaging, single-photon
emission computerized tomography (SPECT) scanning,
positron emission tomography scan, and magnetic reso-
nance imaging. All this evidence declares that using the
oncolytic viruses in combination with conventional im-
aging methods increases the chance of tumor diagnosis
in the early stages.'”!%

5 | VIRUS IN COMBINATION
THERAPY

5.1 | Virusesin combination with
conventional cancer therapy

There are few but positive reports about using virother-
apy along with conventional therapies for cancer'®
(Table 3). Radiotherapy is one of the most commonly
used cancer treatments, and it has a synergistic effect
when combined with virotherapy agents such as onco-
lytic Herpes simplex virus (HSV).""*''* This synergistic
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effect is due to the GADD34 induced by radiation which
can enhance viral promoters via p38 followed by on-
colytic HSV, leading to the blockage of the DNA re-
pair."'®'"7 In addition to the HSV, oncolytic vaccinia
viruses can also improve the efficacy of radiotherapy
through the inhibition of c-Jun N-terminal kinase sig-
nals. Furthermore, according to the reports, the vac-
cinia virus-scAb-vascular endothelial growth factor can
improve radiotherapy efficacy by increasing tumor site
sensitivity to radiation agents.''®'"® In addition to radio-
therapy, chemotherapy is another conventional therapy
that is used in combination with virotherapy. Cisplatin,
5-fluorouracil (5-FU), doxorubicin, temozolomide, iri-
notecan, and paclitaxel are some examples of chemo-
therapy agents used along with viruses for the treatment
of cancer.'**'?* Different studies have revealed that this
combination therapy, in addition to improving the an-
titumor effects, can also enhance safety and increase
patient survival rates.'?* The results of these studies
demonstrate the synergistic effects of using the vac-
cinia virus along with paclitaxel, which can make cells
enter the S phase of their cell cycle. That is the time the
Vaccinia virus is more likely to infect cells.'* The pre-
clinical result of the combination therapy of sorafenib
with oncolytic vaccinia virus demonstrates promising
antitumor effects.'*®

Furthermore, the results of the clinical trial of this
combination therapy on cancerous patients have indi-
cated an enhancement of the safety and clinical responses
that also approve its systemic use in liver, kidney, and thy-
roid cancers. Besides, a few reports of using oncolytic vi-
rotherapy combined with immune checkpoint inhibitors,
such as PD-1 or/and CTLA-4, result in immune response
improvement.'?”'*® All these findings indicated that vi-
rotherapy agents could enhance the antitumor effects of
conventional cancer therapy; however, further studies are
needed in this regard (Figure 2).

5.2 | Viruses in combination with
epigenetic modulators

Histone deacetylases (HDACs) are enzymes that re-
move the acetyl groups from e-N-acetyl-lysine residues
on histones, resulting in histones tightly wrapping the
DNA."**"1*? These enzymes are known as epigenetic mod-
ulators, which also have anticancer activity by arresting
the cell cycle and inhibiting the proliferation of cancer
cells.’**"**’ Suberoylanilide hydroxamic acid (SAHA) is an
HDAC class I and II inhibitors with anticancer activity by
inhibiting tumor cell proliferation, decreasing pro-survival
proteins (Bcr-Abl, c-raf, and protein kinase B), and upreg-
ulating cyclin-dependent kinase inhibitor p21, resulting in
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cancer cell cycle arrest at the G1 phase."*®'* The FDA has
approved the SAHA as a pan-HDAC inhibitor that also has
anticancer activity by affecting apoptosis-related proteins,
such as blocking Bcl-1 and Bcl-2 and increasing Bim, Bak,
and Bax proteins.”o'142 Adenoviruses, combined with
SAHA, have anticancer activity by arresting the cell cycle
at the G2 phase, inducing apoptosis, increasing the tumor
necrosis factor, and inhibiting the upregulation of p50 and
p65 subunits of the nuclear factor kappa B (NF-kB)."**14
Rhabdoviridae is another oncolytic virotherapy agent used
in combination with SAHA on prostate cancer cells. These
two show antitumor activity by increasing the expression
of NF-xB target genes, decreasing the IFN, and inducing
apoptosis.'*>*¢ Trichostatin A (TSA) is well known as a
fungal antibiotic derived from Streptomyces hygroscopicus
which also received FDA approval as a pan-HDAC inhibi-
tor. This antibiotic is also known as an epigenetic modula-
tor because it is able to block HDACs classes I and II.
Furthermore, TSA inhibits breast and prostate can-
cer growth by arresting the cell cycle and regulating
apoptosis-associated proteins.m’148 Combination therapy
with Herpesvirus and TSA on glioma and colorectal can-
cer has shown that these two agents have antitumor and
antiangiogenesis activities by blocking VEGF and Cyclin
D1 degra.dation.l“g'152 Furthermore, this combination
therapy for oral squamous cell carcinoma shows antican-
cer activity through increasing the cytoplasmic NF-xB ac-
tivity."* DNA methyltransferase (DNMTs) gene encodes
the enzymes and is important in epigenetic regulation.
Currently, it has been reported that DNA hypermethyla-
tion plays a fundamental role in cancer development.'>**>*
DNA hypermethylation is widely reported in different
types of cancer, including colon, breast, liver, bladder,
ovarian, esophageal, prostate, and bone cancers, !> 18
Therefore, DNMT inhibitors (DNMTi) can be considered
promising agents for cancer treatment. Azacitidine (5-
AZA) and decitabine (5-aza-20-deoxycytidine) are two of
the most common examples of DNMTi that have received
FDA approval for usage as treatments for acute myeloid
leukemia and myelodysplastic syndrome. These two are
well-known cytidine analogs that must be incorporated
into the genome during the S phase in order to function.
5-AZA can integrate with both DNA and RNA, whereas
decitabine can only integrate with DNA."’ Different stud-
ies have used DNMTi in combination therapy for cancer
with oncolytic viruses, which show strong stimulation
of the immune responses as well as enhancement of the
anticancer effects. Recent reports have demonstrated
that combination therapy of oncolytic HSV-1 with 5-aza
can synergistically induce apoptosis in glioma tumors,
increasing the survival rate in mice bearing orthotopic
human gliomas.'® According to one study, combining

Rhabdoviridae with DNMTi increased anticancer activ-
ity and resulted in tumor remission in 70% of the cases'®!
(Table 4).

5.3 | Virusesin combination
with microRNAs

MicroRNAs (miRNAs) are well known as small non-coding
RNA molecules with regulatory roles affecting the expres-
sion of numerous gene networks at the post-transcriptional
level.'*? Furthermore, the molecules with lengths of about
22 nucleotides are involved in various cellular functions,
such as proliferation, metabolism, cell death, migration,
and cell cycle; therefore, any dysregulation of miRNAs
leads to tumorigenesis and cancer-related processes.'®*™%
Current studies focus on miRNA-based oncolytic virother-
apy for cancer. In this manner, target sequences of miRNAs
have been integrated into the genome of the virus, enhanc-
ing the safety profile of viral agents, and improving their
anticancer efficacy by regulating the viral proteins. Several
studies used the downregulation of specific miRNAs to im-
prove the specificity of oncolytic virotherapy agents toward
tumor cells and decrease their toxicity. For this purpose,
synthetic target sequences complementary to specific miR-
NAs were inserted into the untranslated regions (UTRs)
that are essential for viral replication. This method causes
the degradation of the viral genome in normal tissues but
not in cancerous tissues.'*®~'%

In a study, a complementary target sequence to the
miRNA-145 was integrated into the 3° UTR of the ICP27
gene that plays a role in encoding the glycoprotein of
oncolytic HSV-1. The aforementioned study showed that
this insertion enhanced the selectivity of killing HSV-1
for NSCLC tumor cells compared with normal cells.'®®
Another study demonstrated that combination therapy
using miR-122 as hepatic-specific miRNAs and onco-
lytic adenovirus could significantly counteract hepato-
toxicity and enhance the virus specificity for different
types of cancer cells.'” The serotype 5 adenovirus (Ad5)
is another oncolytic viral therapy for cancer that is used
with miRNA. In this study, eight target sequences of the
miR-148a/miR-152 family were inserted into the Ad5
genome downstream of the E1A gene. The result of this
study demonstrated that this modification decreased the
adenoviral infection in healthy pancreatic tissue, while
enhancing the anticancer effect of the virus on pan-
creatic cancerous tissues.'”" Coxsackievirus B3 is also
modified with miRNA to increase tumor specificity.'’?
In a study, complementary target sequences of miR-34a
were inserted into the 30 UTR and 50 UTR of the cox-
sackievirus B3 genome which is called 53a-CVB. This
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recombinant virus, with no toxicity for healthy tissues
has strong anticancer activity in lung cancer cells'”?
(Table 5).

6 | CONCLUSION

Because traditional cancer therapies such as chemother-
apy, surgery, and even radiotherapy have limitations and
have a number of negative side effects on patients, there
is still a need for an effective treatment. In the search for
novel effective anticancer therapies, virotherapy attracts
attention due to its unique advantages, such as its lack of
cross-resistance with standard therapeutic agents and its
great potential for tumor suppression through a different
mechanism which can also specifically enter and be repli-
cated within the tumor microenvironment.'”* Despite the
excellent and promising results of clinical trials using vi-
rotherapy agents in the treatment of various cancers, this
novel therapy, like other therapeutic approaches, faced
challenges. The challenges included the infectious nature
of the virus, the determination of a delivery platform, an
effective dose, and antiviral immunity.'”> Currently, ge-
netic engineering is used to eliminate the toxicity of vi-
ruses that are supposed to be used in cancer treatment and
enhance their therapeutic effects.”® The combination of
virotherapy agents with conventional therapies is another
solution that results in enhanced anticancer effects with-
out cross-resistance and also allows using lower doses of
the virus, resulting in a reduction in virus toxicity for nor-
mal cells.

Moreover, in the case of solid tumors with high mu-
tational burdens which are also not easy to access, it is
hard to achieve a cure with a single therapy. Therefore,
combination therapy using virotherapy agents along with
conventional therapies can improve the outcomes.'”’ "
In addition, genetic technology allows viruses to be used
as a vector for the target delivery of anticancer therapeu-
tic agents. These findings suggest the combination ther-
apy of using a virotherapy agent along with conventional
therapy is an excellent choice for treating the malignancy.
However, further studies are needed in this field to de-
velop the viruses as anticancer therapeutic agents in the
future.
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